Section 2.3 The Chain Rule (Minimum problems: 17 – 38 odds)

This section covers a new derivative rule called THE CHAIN RULE.

The theory behind the rule is harder than applying the rule in reality.

I will do a short introduction to the theory. We will spend most of the section applying the rule.

Example – Composition, Algebra review.

Complete the table by finding f[g(x)], and do not simplify your answer!!!

	f(x)	g(x)	f[g(x)]
Example 1	$f(x) = x^4$	g(x) = 2x + 3	
Example 2	$f(x) = 5x^2$	g(x) = x + 5	
Example 3	$f(x) = 9\sqrt{x}$	$g(x) = x^2 + 5x - 7$	

To complete the table replace the "x" in the f-function with the right side of the g-function.

Completed table:

	f(x)	g(x)	f[g(x)]
Example	$f(x) = x^4$	g(x) = 2x + 3	f[g(x)]
1			$=(2x+3)^4$
Example	$f(x) = 5x^2$	g(x) = x + 5	f[g(x)]
2			$=5(x+5)^2$
Example	$f(x) = 9\sqrt{x}$	g(x)	f[g(x)]
3		$= x^2 + 5x - 7$	$=9\sqrt{x^2+5x-7}$

We now need to go backwards.

Example – Composition in reverse.

Complete the table by creating two functions f(x) and g(x) whose composition is the given function f[g(x)]

	f(x)	g(x)	f[g(x)]
Example 1			$f[g(x)] = (x+2)^5$
Example 2			$f[g(x)] = 6(3x - 4)^3$
Example 3			$f[g(x)] = 9\sqrt{7x+5}$

To complete the table make the

g - function the inside of the parenthesis, or expression under the radical.

f - function the problem with the inside of the parenthesis or the expression under the radical changed to x.

	f(x)	g(x)	f[g(x)]
Example 1	$f(x) = x^5$	g(x) = x + 2	$f[g(x)] = (x+2)^5$
Example	$f(x) = 6x^3$	g(x)	$f[g(x)] = 6(3x - 4)^3$
2		= 3x - 4	
Example	$f(x) = 9\sqrt{x}$	g(x)	$f[g(x)] = 9\sqrt{7x+5}$
3		= 7x + 5	

This is the formal definition of THE CHAIN RULE:

Chain Rule $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$

Example: Use the chain rule to find the derivative of $h(x) = (7x + 5)^4$

We need to consider the given function as the composition of the functions f and g

 $h(x) = (7x + 5)^4$

 $f[g(x)] = (7x + 5)^4$

First create the functions f(x) and g(x)

 $f(x) = x^4$ g(x) = 7x + 5

Next, we find f'(x)

$$f'(x) = 4x^3$$

Now we find

f'(g(x)) by replacing the x in the derivative with the right side of the g – function

 $f'(g(x)) = 4(7x+5)^3$

Lastly, we find g'(x)

g'(x) = 7

To find the derivative we multiply the last two results.

 $h'(x) = 4(7x + 5)^3 * 7$

Answer: $h'(x) = 28(7x + 5)^3$

The last example is the proper way to find a derivative using the chain rule. Realistically, we can find a way to use the chain rule to find derivatives with problems that have parenthesis with exponents quickly.

CHAIN RULE short cut to find a derivative of a problem written in the form:

 $f(x) = a[g(x)]^n$ (a is a constant, a number without a letter) $f(x) = a(inside \ parenthesis)^n$ $f'(x) = n * a * g'(x)[g(x)]^{n-1}$ $f'(x) = n * a * (derivative of inside of \ parenthesis)(original \ parenthesis)^{n-1}$ Example:

Find the derivative of $f(x) = 5(3x + 8)^4$

a = 5g(x) = 3x + 8g'(x) = 3

$$f'(x) = 4 * 5 * 3(3x + 8)^3$$

Answer: $f'(x) = 60(3x + 8)^3$

Example:

Find the derivative of $f(x) = (3x^2 - 7x + 5)^2$

$$a = 1$$

$$g(x) = 3x^2 - 7x + 5$$

$$g'(x) = 6x - 7$$

Answer:
$$f'(x) = 2(6x - 7)(3x^2 - 7x + 5)$$

Now the hard part. Some problems require us to use both the product rule and the chain rule to compute a derivative.

Example: Find
$$\frac{dy}{dx}$$
 given: $y = 8x(2x + 1)^3$

We need to first set up the product rule.

First factor 8x	Second Factor $(2x + 1)^3$
Derivative 8	Derivative a = 1 g(x) = 2x + 1 g'(x) = 2 $3 * 2(2x + 1)^2$ $6(2x + 1)^2$
Cross multiply down $8x * 6(2x + 1)^2$ $48x(2x + 1)^2$	Cross multiply up $8(2x + 1)^3$

$$y' = 8(2x+1)^3 + 48x(2x+1)^2$$

Let us pull out the common factor one step at a time, although I would do this in one step.

First pull out the common factor of 8

$$y' = 8[(2x+1)^3 + 6x(2x+1)^2]$$

Now pull out the trickier common factor of $(2x + 1)^2$

$$y' = 8(2x + 1)^2[(2x + 1)^1 + 6x]$$

$$y' = 8(2x+1)^2(2x+1+6x)$$

Answer: $y' = 8(2x + 1)^2(8x + 1)$

Last example: $f(x) = 5(3x + 8)^4$

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

a) Find all values of x where the tangent line is horizontal Solve: f'(x) = 0

We found the necessary derivative in a previous example:

$$f'(x) = 60(3x + 8)^3$$

Now solve:
 $60(3x + 8)^3 = 0$
 $60 = 0$ (no solution)
 $(3x + 8)^3 = 0$

Sufficient to solve

3x + 8 = 0 3x = -8 $x = -\frac{8}{3}$ Part "a" answer: $x = -\frac{8}{3}$ b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

So far we know m = 0, since line is horizontal and $x = -\frac{8}{3}$

We need to find the y-coordinate of the point.

$$y = f\left(-\frac{8}{3}\right) = 5\left(3 * \frac{-8}{3} + 8\right)^4 = 0$$
 (simplified on my calculator)

point
$$\left(-\frac{8}{3},0\right)$$
 slope $m=0$

$$y - 0 = 0\left(x - \left(-\frac{8}{3}\right)\right)$$

$$y = 0\left(x + \frac{8}{3}\right)$$

EQUATIONS OF HORIZONTAL TANGENT LINES WILL ALWAYS BE OF THE FORM y = y - coordinate of the point #1-10: Find f[g(x)], and do not simplify your answer!!!

1)
$$f(x) = x^3$$
; $g(x) = x^2 + 1$

2)
$$f(x) = x^4$$
; $g(x) = 4x^2 + 5$

answer:
$$f[g(x)] = (4x^2 + 5)^4$$

3)
$$f(x) = 5x^2$$
; $g(x) = 3x - 4$

4)
$$f(x) = 4x^2$$
; $g(x) = 2x - 5$

answer:
$$f[g(x)] = 4(2x - 5)^2$$

#1-10: Find f[g(x)], and do not simplify your answer!!!

5)
$$f(x) = 7x^{2/3}$$
; $g(x) = 5x + 4$

6)
$$f(x) = 8x^{3/4}$$
; $g(x) = 6x + 4$

answer:
$$f[g(x)] = 8(6x + 4)^{\frac{3}{4}}$$

7)
$$f(x) = e^x$$
; $g(x) = x^2 + 2x + 1$

8)
$$f(x) = e^x$$
; $g(x) = 4x^2 + x - 5$

answer:
$$f[g(x)] = e^{4x^2 + x - 5}$$

#1-10: Find f[g(x)], and do not simplify your answer!!!

9)
$$f(x) = ln(x); g(x) = 3x + 5$$

10)
$$f(x) = ln(x); g(x) = 2x - 7$$

answer: $f[g(x)] = \ln (2x - 7)$

#11-16: Create two functions f(x) and g(x) whose composition is the given function f[g(x)]

11)
$$f[g(x)] = (7x - 3)^2$$

12) $f[g(x)] = (8x - 5)^2$

answer
$$f(x) = x^2$$
 $g(x) = 8x - 5$

13)
$$f[g(x)] = 2(4x + 7)^5$$

14)
$$f[g(x)] = 3(5x+4)^4$$

answer:
$$f(x) = 3x^4$$
 $g(x) = 5x + 4$

#11-16: Create two functions f(x) and g(x) whose composition is the given function f[g(x)]

15) $f[g(x)] = \sqrt{x+5}$

16) $f[g(x)] = \sqrt[3]{7x+1}$

answer
$$f(x) = \sqrt[3]{x}$$
 $g(x) = 7x + 1$

#17-24: Use the Chain rule to find the derivative of each function.

$$\frac{d}{dx} f[g(x)] = g'(x) * f'[g(x)]$$

CHAIN RULE short cut to find a derivative of a problem written in the form:

$$f(x) = a[g(x)]^{n}$$
$$f(x) = a(inside \ parenthesis)^{n}$$
$$f'(x) = n * a * g'(x)[g(x)]^{n-1}$$

 $f'(x) = n * a * (derivative of inside of parenthesis)(original parenthesis)^{n-1}$

17)
$$h(x) = (7x - 3)^2$$

18)
$$h(x) = (8x - 5)^2$$

answer h'(x) = 16(8x - 5)

$$f(x) = a[g(x)]^n$$

$$f(x) = a(inside \ parenthesis)^n$$

$$f'(x) = n * a * g'(x)[g(x)]^{n-1}$$

 $f'(x) = n * a * (derivative of inside of parenthesis)(original parenthesis)^{n-1}$

19)
$$h(x) = 2(4x + 7)^5$$

20)
$$h(x) = 3(5x+4)^4$$

answer $h'(x) = 60(5x+4)^3$

$$f(x) = a[g(x)]^{n}$$

$$f(x) = a(inside \ parenthesis)^{n}$$

$$f'(x) = n * a * g'(x)[g(x)]^{n-1}$$

 $f'(x) = n * a * (derivative of inside of parenthesis)(original parenthesis)^{n-1}$

21)
$$h(x) = 4(2x-1)^3$$

22)
$$h(x) = 2(5x - 6)^3$$

Answer: $h'(x) = 30(5x - 6)^2$

$$f(x) = a[g(x)]^{n}$$

$$f(x) = a(inside \ parenthesis)^{n}$$

$$f'(x) = n * a * g'(x)[g(x)]^{n-1}$$

 $f'(x) = n * a * (derivative of inside of parenthesis)(original parenthesis)^{n-1}$

23)
$$h(x) = (x^2 + 6x + 1)^3$$

24)
$$h(x) = (3x^2 - 5x + 2)^3$$

Answer:
$$h'(x) = 3(6x - 5)(3x^2 - 5x + 2)^2$$

$$f(x) = a[g(x)]^{n}$$

$$f(x) = a(inside \ parenthesis)^{n}$$

$$f'(x) = n * a * g'(x)[g(x)]^{n-1}$$

$$f'(x) = n * a * (derivative \ of \ inside \ of \ parenthesis)(original \ parenthesis)^{n-1}$$

#25-46: Find the derivative of each function.

25) $y = 5x(2x - 4)^3$

26) $y = 5x(7x + 1)^3$

We need to first set up the product rule. We will need the chain rule for one of the derivatives during the product rule.

First factor	Second Factor
	<mark>Derivative</mark>
Derivative	
Cross multiply down	Cross multiply up

Answer: $y' = 5(7x + 1)^2(56x + 5)$

- 27) $g(t) = 6t^2(2t+5)^2$
- 28) $g(t) = 5t^2(4t-1)^2$

We need to first set up the product rule. We will need the chain rule for one of the derivatives during the product rule.

First factor	Second Factor
	<mark>Derivative</mark>
<mark>Derivative</mark>	
Cross multiply down	Cross multiply up

Answer: g'(t) = 10t(4t - 1)(8t - 1)

29)
$$h(y) = (6y - 3)(5y + 4)^2$$

30)
$$f(y) = (2y - 3)(3y - 4)^2$$

We need to first set up the product rule. We will need the chain rule for one of the derivatives during the product rule.

First factor	Second Factor
	<mark>Derivative</mark>
Derivative	
Cross multiply down	Cross multiply up

Answer: f'(y) = 2(3y - 4)(9y - 13)

31)
$$y = \frac{2}{(3x-4)^2}$$

32)
$$y = \frac{5}{(2x-9)^3}$$

This needs the quotient rule. We will need the Chain Rule for one of the derivatives during the quotient rule.

Numerator
<mark>Derivative</mark>
cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator

Answer: $y' = \frac{-30}{(2x-9)^4}$

33)
$$y = \frac{2x}{(3x-4)^4}$$

34)
$$y = \frac{5x}{(2x-9)^3}$$

This needs the quotient rule. We will need the Chain Rule for one of the derivatives during the quotient rule.

<mark>Denominator</mark>	Numerator
Derivative	Derivative
cross multiply top down	cross multiply bottom up

Create a fraction. Place the expressions in the numerator with a subtraction between. Place the square of the denominator in the denominator

Answer: $y' = \frac{-20x-45}{(2x-9)^4}$

#35-40:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

EQUATIONS OF HORIZONTAL TANGENT LINES WILL ALWAYS BE OF THE FORM y = y - coordinate of the point

35) $f(x) = (2x - 3)^2$

36) $f(x) = (3x - 4)^2$

Answer: a) x = 4/3

#35-40:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

EQUATIONS OF HORIZONTAL TANGENT LINES WILL ALWAYS BE OF THE FORM y = y - coordinate of the point

37) $y = 5(x + 3)^4$

38) $y = 7(5x - 6)^2$

Answer: a) x = 6/5 b) y = 0